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1. Implementation of quadratic penalty method. Write code to apply the quadratic
penalty method to the simple optimization problem

min
x∈R2

x1 + x2 subject to x2
1 + x2

2 − 2 = 0.

To solve the subproblems, that is, to minimize Fβ for each individual value β, you can use
code you wrote in previous exercise sessions / homework assignments, or you can use Matlab’s
Optimization Toolbox: the code below requires you to provide a function [val, grad] ...

= F(x, beta) implementing Fβ(x) (as the first output) and ∇Fβ(x) (as the second output)
as well as an initialization x in, and it attempts to return a minimizer x out.

% See 'help fminunc': Matlab's unconstrained minimizer.
options = optimoptions('fminunc', 'SpecifyObjectiveGradient', true);
x out = fminunc(@(x) F(x, beta), x in, options);

It is instructive to visualize the penalized function Fβ for various values of β to get a sense of
how the penalty shapes the ‘landscape’ of the cost function, and to display on those plots the
sequence of solutions (xk) that you compute.

Answer.

clear all; close all; clc;

% See 'help fminunc'. Requires Matlab's Optimization Toolbox.
% Otherwise, you can also just use your own codes for unconstrained
% optimization which you write earlier in the course.
options = optimoptions('fminunc', 'SpecifyObjectiveGradient', true);

% Store all solutions x k as columns of X, for display
X = zeros(2, 10);
X(:, 1) = randn(2, 1); % random initialization at first
beta = 1; % pick some initial value for beta
for k = 2 : size(X, 2)
X(:, k) = fminunc(@(x) F(x, beta), X(:, k - 1), options);
beta = 2*beta;
end

disp(X)

function [val, grad] = F(x, beta)

1



val = (x(1) + x(2)) + beta*(1/2)*(x(1)ˆ2 + x(2)ˆ2 - 2)ˆ2;
grad = [1, 1]' + beta*(x(1)ˆ2 + x(2)ˆ2 - 2)*2*x;
end

■

2. Unbounded penalized function. The function Fβ from the previous exercise may fail
to be bounded below, in which case minimizing it can completely fail. Verify this claim on the
following example:

min
x∈R2

−5x2
1 + x2

2 subject to x1 = 1.

Argue that for β < 10 the function Fβ is unbounded below. What happens for β ≥ 10? Can
we still hope to find a solution for this problem via some instantiation of the quadratic penalty
method?

Answer. We have

Fβ(x) = −5x2
1 + x2

2 +
β

2
(x1 − 1)2

=

(
β

2
− 5

)
x2
1 + x2

2 − βx1 +
β

2
.

When β
2
− 5 < 0, that is, when β < 10, it is clear that Fβ is unbounded below: simply take

x1 → +∞ with x2 = 0 fixed. However, with β ≥ 10 the function Fβ is convex. Even nicer,
when β > 10 the function is strongly convex: it has a unique minimizer corresponding to its
critical point. Explicitly,

∇Fβ(x) =

[
(β − 10)x1 − β

2x2

]
and the critical point is

x =

[ β
β−10

0

]
.

It is clear that as β → ∞ the global minimizer of Fβ converges to [1, 0]⊤, which is indeed the
correct solution to our target problem

min
x∈R2

−5x2
1 + x2

2 subject to x1 = 1.

Thus, so long as we initialize the quadratic penalty method with β > 10, we should be fine. The
issue of course is: in practice, on a more complicated problem, how would we know? The fact
that such issues can arise implies that we, as algorithm designers and coders, must incorporate
some mechanisms / heuristics to act appropriately if unboundedness occurs. ■
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