MATH-329 Continuous optimization
Exercise session 12: Constrained algorithms

Instructor: Nicolas Boumal
TAs: Andreea Musat, Andrew McRae

Document compiled on December 2, 2024

1. Implementation of quadratic penalty method. Write code to apply the quadratic
penalty method to the simple optimization problem

min z; + 2, subject to 2+ a2 —2=0.

z€R2
To solve the subproblems, that is, to minimize Fj for each individual value 3, you can use
code you wrote in previous exercise sessions / homework assignments, or you can use Matlab’s
Optimization Toolbox: the code below requires you to provide a function [val, grad]
= F(x, beta) implementing Fjs(x) (as the first output) and VFs(x) (as the second output)
as well as an initialization x_in, and it attempts to return a minimizer x_out.

% See 'help fminunc': Matlab's unconstrained minimizer.
options = optimoptions ('fminunc', 'SpecifyObjectiveGradient', true);
x_out = fminunc (@ (x) F(x, beta), x_-in, options);

It is instructive to visualize the penalized function Fj for various values of 3 to get a sense of
how the penalty shapes the ‘landscape’ of the cost function, and to display on those plots the
sequence of solutions (xy) that you compute.

Answer.

clear all; close all; clc;

o\

See 'help fminunc'. Requires Matlab's Optimization Toolbox.

o\

Otherwise, you can also Jjust use your own codes for unconstrained

o\

optimization which you write earlier in the course.
options = optimoptions ('fminunc', 'SpecifyObjectiveGradient', true);

% Store all solutions x_k as columns of X, for display

X = zeros (2, 10);

X(:, 1) = randn(2, 1); % random initialization at first
beta = 1; % pick some initial value for beta

for k = 2 size (X, 2)

X(:, k) = fminunc (@ (x) F(x, beta), X(:, k - 1), options);
beta = 2xbeta;

end

disp (X)

function [val, grad] = F(x, beta)




val = (x(1) + x(2)) + beta*x(1/2)*x(x(1)"2 + x(2)7°2 - 2)72;
grad = [1, 1]' + betax(x(1l)"2 + x(2)72 — 2)*x2+*x;
end

2. Unbounded penalized function. The function Fj3 from the previous exercise may fail
to be bounded below, in which case minimizing it can completely fail. Verify this claim on the
following example:

m%Rr% —bx] + 25 subject to ;= 1.
re
Argue that for 8 < 10 the function Fj is unbounded below. What happens for g > 10?7 Can

we still hope to find a solution for this problem via some instantiation of the quadratic penalty
method?

Answer. We have

Fy(x) = =527 + 23 + g(ﬂcl —1)?
B B
2(5—5 :U%%—a:g—ﬁxl—i—?

When g — 5 < 0, that is, when 8 < 10, it is clear that Fj is unbounded below: simply take
r1 — 400 with o = 0 fixed. However, with 5 > 10 the function Fj is convex. Even nicer,

when 8 > 10 the function is strongly convex: it has a unique minimizer corresponding to its
critical point. Explicitly,

VFs(x) = {(6 —10)a, — 5]

2%2

and the critical point is

1o
:1:—{0].

It is clear that as 8 — oo the global minimizer of Fj converges to [1,0]", which is indeed the
correct solution to our target problem

min —5z7 + 25 subject to x; = 1.

T€R2
Thus, so long as we initialize the quadratic penalty method with g > 10, we should be fine. The
issue of course is: in practice, on a more complicated problem, how would we know? The fact
that such issues can arise implies that we, as algorithm designers and coders, must incorporate
some mechanisms / heuristics to act appropriately if unboundedness occurs. [



